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Abstract
We study theoretically the second-order coherence g(2)(0) of light emitted by
polariton lasers, i.e., devices based on stimulated relaxation and condensation
of exciton–polaritons in microcavities. We solve kinetic equations for
the polaritons in different approximations and show that (i) the coherence
introduced into the polariton condensate by an external source can be conserved
by the system over a macroscopically long time, and (ii) if the total number of
polaritons is fixed by the excitation conditions, the correlations between the
populations of the ground and excited polariton states can also result in the
spontaneous buildup of second-order coherence in the polariton condensate.
Both results are obtained neglecting polariton–polariton interactions in the
condensate.

1. Introduction

In this paper we discuss the so-called polariton laser, a promising device to exhibit various
coherent phenomena at room temperature, namely, lasing, Bose–Einstein condensation (BEC)
and superfluidity. A polariton laser is effectively represented by a microcavity in which
the confined photon mode is put in resonance with an excitonic transition. If the coupling
strength between excitons and photons is large enough, new quasiparticles appear, which are
called exciton–polaritons (or polaritons for short), displaying boson properties while having
a very light effective mass. Being Bose condensed, the exciton–polaritons are expected to
spontaneously emit coherent and monochromatic light which represents the polariton laser
effect. We address theoretically the coherence of light emitted by such a structure and
investigate, in particular, the possibility of its buildup in the polariton field. This work
has been motivated by numerous experimental results published in recent years [1–11]. To
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summarize them, polariton lasing has not been experimentally evidenced yet, while many
bosonic effects like the stimulated scattering of polaritons and the resulting amplification of
radiation of microcavities have been demonstrated. As revealed in many works, one specificity
of polariton physics in its relation to coherence is linked to the ultrafast relaxation dynamics
of exciton–polaritons in microcavities. It has both advantages, for example in regard to its
technological applications, and disadvantages, because it makes it harder to achieve coherence
experimentally and more complicated to describe it theoretically.

This paper is organized as follows. The polariton laser and its unique predispositions to
house coherent phenomena are presented in section 2.1 along with the difficulties posed by
the dynamics. As was demonstrated experimentally, the device can be brought to operate in
some regimes where coherent effects and bosonic statistics are ruling the carriers kinetics.
First dynamical descriptions put forward the semi-classical Boltzmann equation, i.e., an
equation of motion for the distribution functions nk (the average number of polaritons with the
wavevector k), where transition rates are enhanced by a factor (1 + nk) to take into account
bosonic stimulation. This picture, reviewed in section 2.2, captures the essential features
of the problem. In section 2.3 we present the extension of the Boltzmann formalism which
enables the description of the quantum characteristics of the polariton condensate, as for
instance its coherence degree. While the Boltzmann approach cannot describe the spontaneous
coherence formation, we show that if a small coherent seed of polaritons is introduced in the
ground state, this coherence can survive and is accompanied by the ground-state population
buildup. The coherence can also be essentially introduced in the polariton system by the
experimental conditions, in particular, when the number of polaritons is fixed by a pulsed
excitation, in which case it requires no seed. In section 3 we study how this coherence can be
transferred into the polariton condensate in the case of fast relaxation. Throughout the paper
we assume nonresonant optical pumping which creates electron–hole pairs in the quantum
well embedded in a microcavity. We assume that these electrons and holes quickly relax in
energy, forming excitons that immediately couple to the photonic mode of the cavity. We work
exclusively in the strong-coupling regime where the two exciton–polariton branches are split by
the so-called Rabi-splitting of about 10 meV, and we neglect any dependence of the dispersion
curves of exciton–polaritons on their concentration. We properly account for the energy and
wavevector relaxation along the lower polariton branch, assisted by acoustic phonons or caused
by polariton–polariton scattering. Also we account for the finite lifetime of exciton–polaritons
which represents their fundamental difference from other kinds of interacting bosons (atoms,
Cooper pairs, etc). We do not presently discuss any effects linked to the spin or dipole moment
dynamics of exciton polaritons. Our aim here is to study under the above assumptions the
dynamics of quantum coherence of the lowest energy polariton state in order to see if it can be
conserved on a longer timescale than the polariton lifetime and if it can build up spontaneously
(in the absence of any seed). These two questions to which we find positive answers are of
fundamental importance for the application of polariton lasers as optical memory elements
and for evidencing Bose condensation of exciton polaritons.

2. Microcavity polaritons and their kinetics

2.1. Microcavity polaritons: strong coupling of excitons and photons

The coupling of excitons and photons in conventional quantum wells is weak—in the sense
that it cannot be retained for long times—because coupling (of the dipole–field type) occurs
for equal wavevectors, and for a single 2D exciton there is a continuum of 3D photons with the
wavevector projection in the plane matching that of the exciton. Coupling of a single state to
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a continuum leads to irreversible dissipation of the single state energy into the continuum. A
one-to-one coupling can be restored by confining the photons, which can be done by placing
the quantum well (QW) inside a Fabry–Perot-like microcavity, effectively made up of many
alternating semiconductors of varying refractive indices.

A quantum theory of such a structure should start with the microscopic Hamiltonian
expressed in terms of ek, hk and ck, the second-quantized annihilation operators of electrons,
holes and photons, respectively, in the basis of 2D-plane waves for which the in-plane
wavevector k is the good quantum number. At this point, we do not need the exact form
of this Hamiltonian, which provides the foundations for semiconductor Bloch equations, of
general validity (see for instance [12, 13]). It suffices to recall that in the low density limit
in which we shall place ourselves for the remainder of this text, this Hamiltonian can be
diagonalized by introducing the exciton operator bk defined by

bk ≡
∑

q

ψ(q)eq+ 1
2 kh−q+ 1

2 k, (1)

whereψ is the Fourier transform of the bound state wavefunction (we neglect excited states in
the confined direction). In terms of this operator we obtain in some approximations [13] the
exciton–photon Hamiltonian (neglecting spin degree of freedom):

H =
∑

k

Eex(k)b
†
kbk +

∑
k

Eγ (k)c
†
kck +

∑
k

h̄�R

2
(b†

kck + bkc†
k), (2)

with the sum being taken over the denumerable set of plane wave solutions in a 2D-box.
Here Eex(k) is the dispersion relation of the exciton:

Eex(k) = Eex(0) +
h̄2k2

2mex
, (3)

where Eex(0) is the rest energy of the bound state hole–electron, and mex is the effective mass,
so big that the dispersion is almost flat over the range of wavevectors of interest. Eγ is the
dispersion of the confined photon,

Eγ (k) =
√

Eγ (0) +
h̄2c2k2

n2
, (4)

where c is the speed of light and n is the refractive index of the cavity. Because of Eγ (0) ≡
h̄2c2k2

⊥/n2, with k⊥ being the part of the wavevector quantized by the confinement, the
dispersion relation of the 2D-photon is not the usual linear one but is close to a parabola,
providing it with a small effective mass Eγ (0)n2/c2. As for the exciton–photon coupling (the
last term in equation (2)), we simply write its strength as h̄�R/2 with �R being dependent
on the exciton oscillator strength and the quality factor of the cavity [13, 14]. This properly
describes microcavities in the linear regime, and in particular it gives an equivalent description
of the semiclassical theory written for the Maxwell fields with a Lorentzian dielectric function
to describe the exciton. Equation (2), however, neglects such effects as the exciton coupling
to the continuum of unconfined photon states outside the cavity [14]. It can nevertheless be
shown to be exact close to resonance [13].

The photon is a boson and thus ck obeys bosonic algebra, [ck, c†
q] = δk,q with all other

commutators zero. However, with the fermion (anticommutating) algebra for eand h operators,
the commutator for bk as defined by (1) reads

[bk, b†
k] =

∑
q,q′

ψ(q)ψ(q′)∗
[
eq+ 1

2 kh−q+ 1
2 k, e†

q′+ 1
2 k

h†
−q′+ 1

2 k

]

= 1 −
∑

q

|ψ(q)|2
(

e†
q+ 1

2 k
eq+ 1

2 k − h†
−q+ 1

2 k
h−q+ 1

2 k

)
, (5)
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and is therefore bosonic only in the limit of vanishing number occupancy, i.e., in the low
density limit. Especially, 〈[b0, b†

0]〉 = 1 − O(na2
0), where n is the density of excitons and a0

is the Bohr radius associated to ψ . One can therefore treat excitons as bosons only in the
limit na2

0 � 1. In such an approximation, the Hamiltonian (2), bilinear in bosonic operators,
can be diagonalized with the Hopfield transformation:

aL
k ≡ Xkbk − Ckck, (6)

aU
k ≡ Ckbk + Xkck, (7)

where the coefficients Ck and Xk satisfy C2
k + X2

k = 1, so that the transformation is canonical
and a operators follow the bosonic algebra as well. The Hamiltonian (2) now reduces to free
propagation terms only:

H =
∑

k

EU(k)a
U†
k aU

k +
∑

k

EL(k)a
L†
k aL

k , (8)

for upper and lower polariton branches, with second quantized annihilation operators aU

and aL, respectively. The dispersion relations for these branches are

E U
L
(k) = 1

2 (Eex(k) + Eγ (k))± 1
2

√
δ2

k + h̄2�2
R, (9)

(the U subscript is associated with the plus sign, L with minus) where δk is the energy mismatch,
or detuning, between the cavity and exciton modes:

δk ≡ Eγ (k)− Eex(k). (10)

The Hopfield coefficients used to diagonalize this Hamiltonian are most simply expressed as a
function of the upper polariton dispersion relation (9):

Ck = h̄�R√
(EU(k)− Eex(k))2 + h̄2�2

R

, (11)

Xk = EU(k)− Eex(k)√
(EU(k)− Eex(k))2 + h̄2�2

R

. (12)

Equation (9) is one of the major results of microcavity polariton physics due to the various
consequences this relation bears on many key issues that we are going to address in the
following sections. It is plotted as solid curves in figure 1, where the dispersion for the exciton,
equation (3), and the photon, equation (4), are also plotted in dashed curves. Measurements of
angle resolved photoluminescence (PL), e.g. [15], confirm this theoretical description. As the
result of the interaction, there is an avoided crossing (anticrossing) of energies. The polariton
therefore arises as a coherent mixture of the photon and exciton states. It is the true eigenstate
of the system, whereas photon and exciton modes are transient states, exchanging the energy
at the Rabi frequency �R. The Hopfield coefficients (6) are the fractions of the exciton or
photon part of the polariton. In this simple picture the anticrossing appears however weak the
interaction is. This can be made more realistic, taking into account the broadening of exciton
and photon resonances, by adding to equations (3) and (4) imaginary components −i�ex

and −i�γ respectively. �ex is the broadening caused by exciton interactions (inter-particles or
with phonons), while �γ reflects the finite reflectivity which is inversely proportional to the
quality factor of the cavity. At zero detuning equation (9) then becomes

E U
L
(k) = 1

2 (Eex(k) + Eγ (k)− i�ex − i�γ )± 1
2

√
h̄2�2

R − (�ex − �γ )2. (13)

The consequences of this equation depend on the sign of the expression under the radical,
demonstrating that the physical behaviour of the system depends on the interrelation between
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Figure 1. Dispersion relations of a typical GaAs-based cavity. Dashed curves show the bare photon
mode dispersion (nearly parabolic because of the confinement) and exciton mode. Solid curves
are the new eigenmodes in strong coupling, termed upper-branch and lower-branch polaritons.
Polariton laser effect pertains to lower-branch polaritons.

the strength of the exciton–photon coupling and dissipation. If h̄�R > (�ex −�γ ), E U
L

exhibits
the energy splitting already encountered, which corresponds to the so-called strong coupling
regime, where the correlations between exciton and photon are important and their interaction
cannot be dealt with in a perturbative way. An altogether new behaviour of the system is
expected and should be described in terms of polaritons. Weisbuch et al [16] were the first to
experimentally observe this regime, manifested in the splitting of the reflectivity peaks about the
cavity resonant frequency. However, if h̄�R < (�ex −�γ ), the square root becomes imaginary
and thus the (real) energy anticrossing disappears and the energy broadening (imaginary part
of (13)) becomes split. This is the weak coupling regime where the system can be described in
terms of weakly interacting photons and excitons. More detailed analysis [13, 14] shows that
with the reflectivity going to zero, the broadening of the photon mode diverges (the photon
does not remain in the cavity) and the broadening of the exciton mode approaches the bare QW
spontaneous emission rate, describing in effect weakly-interacting photons and excitons. In
the strong coupling regime, the polaritons (and especially the lower-branch polaritons, which
we will exclusively refer to, from now on) have many specific properties endowing the device
with revolutionary features. Namely, polaritons are photon-like particles with a very small
effective mass which can still scatter efficiently between themselves and with phonons. Their
bosonic nature, along with this possibility of efficient relaxation by scattering, allows one to
envision interesting dynamics powered by stimulation and therefore leading to the appearance
of coherence. It is important to benefit from these specificities to retain the strong coupling
regime, which is an experimental difficulty and a technological challenge. Wide bandgap
materials such as GaN-based devices, which hold this regime up to room temperature [17],pave
the route towards the realization of such devices. Although �ex − �γ appears in the criterion
of strong coupling from a simplified point of view given by equation (13), experimentally,
where this splitting is observed for example by photoluminescence, only the sum of these two
broadenings, � = �ex + �γ , can be observed. In the special case of equal population of the
two branches, the splitting in photoluminescence is derived in [13] as

�PL =
√

2�R

√
�2

R + 4�2 −�2
R − 4�2, (14)

so that it is possible that even in the strong coupling regime (where the device would exhibit
effects expected from polaritons), the splitting cannot be resolved from PL observations.
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Before we address the description of polariton dynamics in the next section, let us briefly
discuss the question of interparticle interactions, namely, polariton–polariton interactions.
Polaritons can scatter with each other thanks to their underlying excitonic fraction, of the
dipole–dipole interaction type, so that they are weakly interacting. The theory previously
discussed pertains to the linear—or noninteracting—regime, and is universally accepted as
correct. The nonlinear theory however finds conflicting coverage in the literature, as is most
clearly illustrated by the work of Combescot et al [18] who show that the composite nature
of polaritons (or excitons) prevents one from using an effective interacting Hamiltonian of the
usual type (for elementary particles) 1

2

∑
k,k′ ,q Vqa†

k+qa†
k′−qakak′ , with Vq the Fourier transform

of the interaction potential. The authors advocate instead the recourse to a formalism they
develop, the close to boson formalism. In this paper, we take the view that the predominant
issues of a polariton device arise from the interplay of favourable factors (stimulation, small
mass, delocalization, density of final states, polariton trap, etc) against competing factors
(bottleneck, short lifetime, etc). We believe that the problem is essentially dynamical and
regard the finite lifetime as more important than deviations from exact bosonic algebra, or
similar issues held in the steady state. We therefore make the approximation that polaritons
are true bosons at the densities of interest, and that the specificity of microcavities essentially
comes from the dispersion relation, the dimensionality, and the finite and short lifetime. In
what follows, based on these approximations, we develop the kinetic equation describing
quantities of interest, namely populations and coherence degree, and numerically solve it with
parameters modelling realistic cavities. We recommend [18] or [19] for treatments giving full
credit to the underlying fermionic structures.

2.2. Semi-classical Boltzmann description: stimulation and bottleneck

The simplest, yet to date the most fruitful, formalism to describe the dynamics of polaritons is
the semi-classical Boltzmann equation, which reads in momentum space

dnk

dt
= (1 + nk)

∑
q �=k

Wq→knq − nk

∑
q �=k

Wk→q(1 + nq) + Pk − nk

τk
, (15)

where nk is the average number of polaritons with wavevector k, Pk is an external source
term (a pump), 1/τk is the decay rate (radiative and nonradiative) for a polariton in this
state, and Wk→q is the rate of transitions from state k to state q. These transitions can
be caused by several mechanisms, but especially the phonon-mediated scattering and the
polariton–polariton scattering. Matrix elements for these processes have been calculated
by Tassone [20] (but see [18] for the polariton–polariton term). Also one can add, to ease
the relaxation, the scattering between polaritons and a gas of cold residual electrons [21].
However, it should be noted that, as far as the Boltzmann equation is concerned, the actual
decomposition of these transition rates is relevant only when it comes to simulating a realistic
structure, and that otherwise there is no fundamental difference between a relaxation involving
a phonon or elastic scattering with another polariton. If an effect can be evidenced with
equation (15) it should never be attributed to one specific mechanism; for example, one cannot
claim that polariton–polariton interactions are intrinsically required, since identical results can
be achieved dispensing from interparticle interactions by merely promoting another relaxation
mechanism (e.g., diffusion with free electrons) to enhance the transition rates.

Equation (15) along with the characteristic dispersion relation of polaritons (equation (9)
and figure 1) and with suitable expressions for parameters Wk→k′ and τk, has proved successful
in providing quantitative agreement with photoluminescence experiments. It already contains
in effect most of the key ingredients of polariton physics. There is the stimulation which
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is embedded in the (1 + nk) expression, which helps the accumulation of polaritons in the
ground state. For all other states, which are degenerate in energy and extend on a so-called
elastic circle, the polaritons redistribute themselves very quickly so that the average number of
particles per states is reduced considerably, fighting against stimulated effects which are due
to high occupancy of excited states. On the other end, the radiative decay rate 1/τk increases
with |k| approaching zero because the photon fraction is higher in this case and the probability
of radiative escape increases in proportion. This requires efficient relaxation since a polariton
does not remain for long in this part of the dispersion where it can experience scattering that
will bring it into the ground state. The Hopfield coefficients (equation (6)) make the polariton
photon-like at the inflection point of the dispersion relation. Finally, the momentum–energy
conservation requirement which must be satisfied for the Boltzmann equation is dictated by the
shape of the dispersion. Its highly unusual nature coupled to its two-dimensional character add
further complication to the relaxation. The point where two polaritons can scatter through a
momentum–energy conserving process with one of them falling in the ground state is referred to
as the magic angle because of the outstanding effect revealed by pump–probe experiments [4]
where this point was excited resonantly. The dramatic enhancement of diffusion when the
ground state was initially populated (by a probe) has been the clearest evidence of boson
stimulation in microcavities. However, such important experiments fall in the province of
coherent control, since the polaritons created at the magic angle are already coherent and
the coherence acquired by the ground state is transferred there rather than created. It is an
experimental concern when looking for the polariton laser effect (as opposed to a parametric
amplifier in the case of a pump–probe experiment) that the excitation is either not resonant
or is otherwise in remote enough regions of the dispersion so that the coherence is quickly
lost through several scattering events. The combination of these phase-space restrictions
with lifetime gives rise to the bottleneck effect, i.e., a dynamical barrier which blocks (at
the inflection point) the polaritons en-route towards the ground state. A structure where the
detuning is chosen to match the magic angle with the inflection point would benefit from
parametric amplification and drastically favour condensation.

Many results have been obtained in the investigation of the interplay of these competing
effects by numerically solving the Boltzmann equation. We refer the reader to [20, 22, 23].
However, a shortcoming of this formalism is that it is essentially classical. The stimulation is
a mere renormalization of transition rates and most of the important quantities, first of all the
coherence, are out of its scope. In the next section, to remedy this limitation while still keeping
the full benefit from a successful Boltzmann picture, we extend the formalism to describe the
kinetics of the ground state density matrix.

2.3. Ground state density matrix approach

For realistic structures the Boltzmann equation predicts that a regime can be reached where
a ground state population builds up in a way very similar to a conventional Bose condensate,
for example, of cold atoms [22, 23]. Deng et al [10] have studied the second-order coherence
of the ground state population with respect to pumping in order to find traces of the Bose
condensation of polaritons. It should be emphasized before going deeper into analysis of
the coherence that strictly speaking, Bose condensation as a phase transition is impossible in
two-dimensional systems. Possible phase transitions like the Kosterlitz–Thouless transition
towards superfluidity [24, 25] would indeed be accompanied by a second-order coherence
buildup, but conversely such a buildup is not enough by itself to fully evidence a bosonic phase
transition. To obtain an experimental signature of the (quasi-)Bose condensation of polaritons,
the experimentalists should search for a self-established phase of light emitted by a polariton
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laser. If light is emitted by both ±1 spin-degenerated polariton states, the buildup of a linear
polarization in the emission of polariton lasers would be clear evidence of the order parameter
appearance in the system. The second-order coherence can be exhibited by a system having
no order parameter. Nevertheless, it is an important characteristic of laser light and it merits
a careful experimental and theoretical investigation. In this section we present the master
equation for the ground state density matrix ρ0 and its solution, which allow the analysis of
the second-order coherence in polariton lasers. Further details can be found in [25–27].

In what follows we keep the basis of plane waves with appropriate boundary conditions
and denote the Fock state with nk polaritons by |nk〉, with associated creation/annihilation
operators a†

k, ak, dropping the superscript L since we shall consider only the lower branch.
In particular, a†

0 , a0 are the boson operators for the ground state. We denote ρ the density
matrix for the entire system (comprising polaritons of all momenta but also phonons and
hypothetically free electrons), and ρ0 the ground state reduced density matrix, i.e., ρ0 ≡ Tr(ρ)
where the trace is taken over all quantum degrees of freedom but for the polariton ground state.

In the Born–Markov approximation one can derive from a microscopic Hamiltonian [25]
an equation of motion for ρ0. The Born part of this approximation grants the density matrix
as approximately satisfying for all times the following factorization:

ρ ≈ ρ0ρpolρphρel, (16)

where ρpol, ρph and ρel are the density matrices for the polaritons in excited states, phonons,
and electrons (if considered) respectively. Doing so we neglect the correlations between
the different quantum states associated with the respective density matrix. In particular, we
neglect the correlations between the number of polaritons in the ground state and the number
of polaritons of a given excited state. In the same spirit all anomalous correlations, i.e., those
which have no interpretation in terms of classical quantities (particle number), are neglected.
Also the infinite heat capacity approximation is made for ρph and ρel, i.e., these are made time-
independent and diagonal with Bose–Einstein and Fermi–Dirac distributions respectively. As
for the Markov approximation, it demands a slow time evolution as compared to the typical
collision times. The resulting master equation reads

ρ̇0 = − 1
2 [Rout(t)(a

†
0a0ρ0 − 2a0ρ0a†

0 + ρ0a†
0a0) + Rin(t)(a0a†

0ρ0 − 2a†
0ρ0a0 + ρ0a0a†

0)], (17)

where Rout and Rin are time-dependent parameters obtained from the microscopic
distributions [25] as Rin ≡ ∑

q �=0 Wq→0nq and Rout ≡ ∑
q �=0 W0→q(1 + nq) − 1

τ0
. Note

that the lifetime is contained in Rout. They turn out to be exactly (in the approximations listed
above) the rate transitions of the semi-classical Boltzmann equation (15). These rates are
plotted in a special case favourable to condensation in figure (2).

In what concerns the average condensate population n0 ≡ Tr(ρ0a†
0a0) this description

provides the same dynamics as the Boltzmann equation (see equation (15)). Namely,

ṅ0 = (1 + n0)
∑
q �=0

Wq→0nq − n0

∑
q �=0

W0→q(1 + nq)− n0

τ0
. (18)

However, equation (17) allows access to quantities previously irrelevant to the formalism,
like the order parameter 〈a0〉 or the coherence degrees of various orders. In particular, the
second-order coherence is defined as [10, 28]

g(2)(t ′) ≡ 〈a†
0(t)a

†
0(t + t ′)a0(t + t ′)a0(t)〉

〈a†
0(t)a0(t)〉〈a†

0(t + t ′)a0(t + t ′)〉 . (19)

The first-order coherence, g(1)(t ′) ≡ 〈a†
0(t + t ′)a0(t)〉/

(〈a†
0(t + t ′)a0(t + t ′)〉〈a†

0(t)a0(t)〉
)1/2

, is
less important for a single-mode where it is largely independent of the structure of ρ0. In both
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Figure 2. Transition rates Rin, Rout as a function of time, as computed numerically from the semi-
classical Boltzmann equation for a typical GaAs-based cavity and for a strong enough pumping,
so that Rin overcomes significantly Rout at an early relaxation stage. In the infinite time limit,
Rin < Rout and all the coherence is lost in the system, but can be retained over macroscopic times.
At lower pumping, Rin always remains less than Rout and the coherence injected into the system is
quickly lost.

cases, the t ′ dependence can be computed from knowledge of the single-time density matrix
with the quantum regression theorem, but we shall not use it here, and restrict the consideration
to g(2)(0) (see however [23]). This zero-delay, second-order coherence degree is a quantity
sufficient to evidence coherence (see, e.g., [29] from the theoretical side and [10] for an
experimental application in our context). It is convenient to define a normalized coherence
degree η by

η ≡ 2 − g(2)(0), (20)

so that η = 0 for a thermal state, i.e., a state without coherence, and η = 1 for a coherent
state [29]. This parameter can be ill-behaved, as, for example, for the Fock state |n〉
where η = 1 + 1/n, but we shall see that for a significant gamut of states it can indeed
be interpreted in terms of a ratio of coherence.

With equation (17) one gets the following equation of motion for the ‘order parameter’:
d

dt
〈a0〉 = 1

2
(Rin − Rout)〈a0〉. (21)

The equation for 〈a0〉 is homogeneous, and, independently of the evolution of n0, the coherence
cannot appear in the system if it is entirely absent at initial time, i.e., if 〈a0〉 = 0 at t = 0. There
is amplification thanks to stimulation which builds up a population of higher steady occupancy
with higher pumping power, but in all cases the quantum state grows out of the vacuum as
a thermal state whose distribution function flattens to accommodate an increasing number of
particles. This result is linked to the well-known inability of the Boltzmann equation to initiate
the order parameter formation.

While the master equation cannot describe the spontaneous coherence buildup, it is valid to
describe the dynamics between the condensate and its ‘vapour’. If we simulate the condensate
formation with a coherent seed as an initial condition, it is possible to derive the analytical
solution for ρ0(t) (see [26] for details). For the initial condition ρ0(0) = |α0〉 〈α0|, with |α0〉
being a coherent state, the solution is

ρ0(t) = 1

1 + m(t)
D(G(t)α0) exp

{
− ln

[
1 + m(t)

m(t)

]
a†

0a0

}
D(G(t)α0)

†, (22)
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where D(α) is the displacement operator defined by D(α) ≡ exp{αa†
0 − α∗a0} and

G(t) ≡ exp

[
1
2

∫ t

0
(Rin(τ )− Rout(τ )) dτ

]
, m(t) ≡ G(t)2

∫ t

0

Rin(τ )

G(τ )2
dτ. (23)

The significance of all these parameters is more transparent in the Glauber–Sudarshan
representation of the density matrix, defined by [29]:

ρ0(t) ≡
∫

P(α, α∗, t) |α〉 〈α| d2α, (24)

with α, α∗ granted as independent complex variables. In this phase–amplitude representation,
the density matrix is

P(α, α∗, t) = 1

πm(t)
exp

[
−|α − G(t)α0|2

m(t)

]
. (25)

This is the convolution of a Gaussian of variance m(t) with a delta function centred
about G(t)α0. The former, as a P function, describes a thermal state of mean m(t), while
the latter describes a coherent state of mean G(t)α0. Convolutions of P functions describe
superpositions of fields [29] so that we have now completed the description of the dynamics
of a coherent seed (which can be profitably seen as an input to a device) in terms of a coherent
amplification of this signal, given by the gain G(t) and an incoherent fraction which comes
from spontaneous diffusion of the order parameter. This also permits the interpretation of η
as the squared coherent fraction of polaritons, since for such a field, which is a superposition
of n coherent polaritons with m thermal (or incoherent) polaritons, η evaluates to

η =
(

n

n + m

)2

. (26)

Exploitation of this formalism requires numerical simulations (needed to calculate the rates
in equation (17)) which are discussed in [26]. There it is found that if a pumping threshold is
attained, the signal can retain its shape, especially its phase, over macroscopic time duration.
Otherwise it gets quickly damped towards a thermal state again, which is being amplified
incoherently.

Note that the specifics of the master equation (17) come from the time dependence of
rates Rin and Rout , which are being computed from the Boltzmann equation. The instability
associated to the sign of Rin − Rout, patent in equation (21), can also motivate this seed as
arising from a fluctuation of a classical nature. The appearance of the seed as a result of such
fluctuation needs, however, an additional investigation.

3. The onset of coherence

3.1. The need for nonlinearity

The spontaneous coherence buildup is closely related to the correlations omitted by the
disentangling of the density matrix given by equation (16), so that the previous formalism is
unable to describe the growth of coherence out of the vacuum. In the literature, equation (17) is
known as describing the single-mode linear amplifier (but with time-independent coefficients).
This is a system where the noise coming from the spontaneous diffusion of polaritons into the
ground state (which randomize the phase while increasing the amplitude) is amplified as well
as the signal. A laser, however, adds a resonator to the amplifier, or more specifically, an
oscillator, which feeds back into the system part of its output. This nonlinearity results in
smothering of the noise instead of amplifying it. Such nonlinearities that have been neglected
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should now be taken into account. This will dispense from the arbitrariness of a seed, and
reconcile our picture with the common view that the Boltzmann equation breaks down at the
onset of coherence though it retains its validity on both sides of this stage. As we could expect,
not just any kind of nonlinear term that can be supplemented to the Boltzmann equation will
bring the desired effect. For instance adding polariton–polariton interactions in the condensate
in (17) is of no use in that regard. It amounts to adding a term proportional to [a†2

0 a2
0, ρ] which

one can readily check is unable to grow coherence.
In [27] all nonlinear terms which can be added to (17) to allow for coherence buildup

without more involved extensions of the formalism have been systematically tracked down.
None of them appears as of special relevance in the case of a polariton laser, but instead they
arise in conventional laser theories where they come from the resonator. In our case there is the
Fabry–Perot cavity, but it has vanished in the strong coupling regime to allow the formation of
the new eigenstates which are polaritons. In the weak coupling regime it is however possible
to exhibit an exciton laser of a conventional type with the cavity being the resonator.

In [30] the formalism of the previous section has be reformulated to describe the polariton
order parameter evolution, and a general type of nonlinearity has been added to study
the coherence buildup without the need of a seed. This description predicts the growing
of a randomly phased coherent state of condensed polaritons. The microscopic origin of
nonlinearity lies in the correlations between the polaritons in the ground and excited states,
taking place due to polariton–polariton repulsion and omitted in the derivation of equation (17).

We expect that two types of nonlinearities may lead to the spontaneous buildup of the
coherence in polariton lasers. First, at the high density limit, repulsing interactions between
polaritons in the condensate may lead to its depletion manifesting itself through the increase
of Rout , as discussed in [30]. Second, at lower concentrations of polaritons, the nonlinearity
may arise due to correlations between momentary occupation numbers of the ground and
excited states that arise if the total number of polaritons in the system is fixed by the excitation
conditions. This second mechanism influences both Rin and Rout . We will not describe the
evolution of the whole density matrix of the polariton subsystem, but study the dynamics of its
diagonal elements only, in the known framework of the so-called quantum Boltzmann master
equation.

3.2. Quantum Boltzmann master equation: the two-oscillators model

Gardiner et al [31] derived a quantum kinetic equation successfully describing the growth of
a BEC for conserved bosons, at equilibrium. By ‘conserved’ it is meant that, unlike gauge
bosons such as photons or phonons, the particles cannot be simply created or annihilated
by the system to adjust to external parameters (typically the temperature). This property is
at the heart of BEC since consequently bosons must diffuse to lower energy states until the
phase space cannot accommodate all of them, effectively gathering the excess fraction into
the ground state. Various approximations conducted on that general kinetic equation yield
back famous transport equations, among them the semi-classical Boltzmann equation as the
one with the most approximations, of the kind we already discussed and used in [25]. Also
here this equation is shown to be invalid for describing the dynamics when the condensate is
forming. The fewest approximations that one can relax to obtain a kinetic equation able to
grow coherence spontaneously is, in Gardiner’s terminology, a Quantum Boltzmann Master
Equation (QBME). It is an equation with structure that closely follows that of the Boltzmann
equation itself—in particular it still depends crucially on the same Boltzmann rates Rin, Rout—
but now instead of being an equation for the distribution function nk, it is an equation for the
probability to have configurations with these populations (whence the name ‘master equation’).
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Stated another way, the populations in the semi-classical Boltzmann equation are averages,
which we shall thus now write 〈nk〉, whereas in the QBME, nk is a random variable with
fluctuations and correlations to other likewise random variables which are not neglected (that
is we do not allow such equalities as 〈nknq〉 = 〈nk〉〈nq〉).

Gardiner et al have simulated the exact QBME for cold atoms [32], with impressive
agreement with experiment and thermodynamic theories (there obtained from the infinite time
limit of kinetic equations). This however calls for heavy numerical Monte Carlo simulations.
We shall investigate this equation in the case of a toy model of two oscillators, in which case the
QBME is an equation for p(n,m): the probability to have n polaritons in the ground state and m
polaritons in the other (excited) state. For simplicity we first ignore pumping and consider
infinite lifetime. For relaxations through coupling to a thermal bath which temperature defines
transition rates w1→2 from state 1 to 2 and w2→1 from 2 to 1 this equation reads

ṗ(n,m) = (n + 1)m[w1→2 p(n + 1,m − 1)−w2→1 p(n,m)]

+ n(m + 1)[w2→1 p(n − 1,m + 1)−w1→2 p(n,m)]. (27)

It can be solved exactly in the steady state:

p(n,m) = ξ − 1

ξn+m+1 − 1
ξn P(n + m), (28)

with ξ ≡ w2→1/w1→2 (note that by definition of the ground state, ξ > 1) and P(N) ≡∑
n+m=N p(n,m) is the distribution of total particle number, i.e., the probability to have N

particles in the entire system. P(N) is time independent because the relaxation mechanism
conserves the particle number. Its definition therefore provides initial conditions. This
conservation implies correlations of particle numbers of both states, with full correlations if
the number of particles in the whole system is known precisely (in which case P(N) = δN,N0 ).
We identified such correlations as responsible for coherence buildup. Indeed we proved that
neglecting correlations always yields two thermal states, whereas taking them into account
allows, by lowering the temperature (increasing ξ ), an initial configuration of two thermal
states to reach a configuration where the ground state has acquired some coherence [28]. The
criterion of the buildup of coherence in the ground state is that the statistics of the ground
state p1(n) ≡ ∑

m p(n,m) behaves as P(n). This is indeed the case for (28) in the limit
of ξ → ∞ (vanishing temperatures). Physically this implies fast relaxation of polaritons into
the ground state, when the distribution function reproduces the distribution function of the
total number of polaritons in the system. Therefore, if the fluctuations of the total number of
polaritons are weak, the fluctuations of the number of polaritons in the ground state are weak
as well, and they are second-order coherent.

We have also developed a dynamical description of a simple polariton laser by considering
the coherence formation for finite lifetime τ in the presence of pumping (to maintain nonzero
steady state population), still in the two-oscillators model. In this case we study p1, the
statistics of the ground state alone, and 〈m〉n , the mean number of particles in excited
states given there are n in the ground state. Those quantities are linked in the defining
formula 〈m〉n p1(n) = ∑

m mp(n,m). The Boltzmann Master Equation thus reads [28]

ṗ1(n) = (n + 1)
(
w1→2(〈m〉n+1 + 1) + 1/τ)p1(n + 1)

− {n(w1→2(〈m〉n + 1) + 1/τ) + (n + 1)w2→1〈m〉n} p1(n)

+ nw2→1〈m〉n−1 p1(n − 1), (29)

with the steady state solution obtained by detailed balance:

p1(n + 1) = w2→1〈m〉n

w1→2(〈m〉n+1 + 1) + 1/τ
p1(n). (30)
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With finite lifetime and pumping, correlations due to the conservation of particle number
can only be ascertained in the mean:

〈m〉n = N − n, (31)

with N the average total number of particles. Equations (30), (31) and p1(1) > p1(0) as
the criterion for coherence yield the critical relationship between density N , lifetime τ and
temperature T ∝ 1/ ln(w1→2/w2→1), for coherence in the steady state:

N >
1

τ (w2→1 −w1→2)
. (32)

Equation (29) has been solved numerically for two sets of parameters discriminating the
criterion (32), the results of which are plotted in figure 3.

The previous toy model has the merit to delineate the mechanism of coherence buildup
and provide some analytical insights. In the next section we extend this procedure to an infinite
set of oscillators, modelling the different polariton states.

3.3. Polariton laser case, expressions for the correlations

Although the correlations which will invalidate the Boltzmann equation in this case—and
require the use of its master equation instead—might have many conceivable origins, among
which interparticle interactions undoubtedly rank as a leading factor, we find that correlations
caused by particle number conservation are enough to describe coherence buildup of the
noninteracting gas in contact with a thermal bath. Therefore we choose to model the polariton
laser effect for a noninteracting polariton gas in the canonical ensemble.

Since we remain interested in the statistics of the ground state only, the kinetic equation
is for p(n0), the probability to have n0 polaritons in the ground state, and is of a simple rate
equation character:

ṗ(n0) = W n0
in n0 p(n0 − 1) + (W n0+1

out + 1/τ0)(n0 + 1)p(n0 + 1)

− W n0
in (n0 + 1)p(n0)− (W n0+1

out + 1/τ0)n0 p(n0), (33)

with τ0 the lifetime of polaritons in the ground state and W n0
in , W n0

out the incoming and outgoing
scattering rates for the ground state when it contains n0 particles. Note the dependence on the
ground state occupancy, which appears in the usual rate transitions as a dependency on the
number of particles in excited states:

W n0
in (t) =

∑
q

Wq→0(t)n
n0
q (t), (34)

W n0
out(t) =

∑
q

W0→q(t)(1 + nn0
q (t)). (35)

The Boltzmann equation deals with mean values, whilst the master equations deal with
random variables. We do not want to solve a complete set of master equations for all quantum
states in the system as it is extremely heavy from the point of view of numerical calculations
and does not allow one to obtain an analytical result. Our method will consist of solving the
master equation for the ground state only, taking into account the correlations between n0 and
average occupation numbers of excited states, nq, imposed by the conservation of the number
of particles in the system. This approach is valid if the timescale of fluctuations of n0 is much
slower than that of the transitions between the excited states. In this case, one can do the time
averaging of fluctuating populations on the scale of fluctuations of n0. This assumption seems
to be quite reasonable bearing in mind that, for the most part, excited states are situated at
the exciton part of the lower polariton branch, and transitions between them are governed by
fast relaxation processes involving acoustic phonons. On the other hand, the exchange with
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Figure 3. The initial condition is vacuum and parameters are N = 350, w1→2 = 0.75 × 10−5

(arb. units) and 1/τ = 20 × 10−5 (arb. units) for both columns, but the rhs column is
for w2→1 = 0.95 × 10−5 (arb. units) whereas the lhs is for w2→1 = 10−5 (arb. units). All
arbitrary units have the same dimension of an inverse time. (a) is the density plot of p1(n) as a
function of time (lighter colours for higher values with black for zero), (b) is p1(n)—a projection
of (a)—in the steady state region and (c) is the coherence degree η = 2 − g(2)(0). On the lhs the
threshold is attained and coherence appears in the system. On the rhs only a thermal state is grown;
the coherence remains low.

the ground state is slower because of the phonon bottleneck. The average populations nn0
q can

be obtained from the Boltzmann equation with an additional constraint imposed by the total
number of polaritons at the excited states, Nex:

Nex = N − n0, (36)

where N is the total number of polaritons in the system.
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d)

Figure 4. (a) Density plot of the ground state statistic p(n) as a function of time for a pumping
power of 500 W cm−2 starting from vacuum (cf figure 3) and (b) three projections for various
times: the dotted curve at 90 ps has the statistics of a thermal state while the solid curve at 600 ps
has the statistics of a coherent state. The dashed curve’s statistics at intermediary time of 200 ps
sits in between. (c) Coherence degree η = 2 − g(2)(0) of the polariton ground state versus time
(solid) and ground state population normalized by the value achieved in the steady state (dotted).
(d) The same as (c), but for a pumping power four times smaller. In the latter case the ground state
population remains small and the coherence degree is zero.

Let us note at this point that the method we used to take into account the correlations
between the ground state population and occupation numbers of the excited states, though
oversimplified, is qualitatively correct as it reflects the general tendency: the more polaritons
are in the ground state, the less of them remain in excited states, if N is conserved. Clearly,
in the case of a two-level system this approach coincides with the exact solution described in
the previous section.

Equation (33) can now be solved numerically and its second-order coherence degree
computed. Results of simulations are plotted in figure 4. The polariton distribution
function versus time and scattering rates (34) are obtained by solving the semi-classical
Boltzmann equation, as described in [21]. The ground state statistics versus time is calculated
simultaneously and self-consistently using the QBME equation (33). Parameters used were
for a CdTe microcavity with eight QWs, a Rabi splitting of 15 meV and at zero detuning.
Diffusion was mediated by a bath of phonons at a temperature of 6 K and with a residual gas
of electrons of density 1011 cm−2. Compared with the similar results obtained in the simple
two-oscillators picture, cf figure 3, the case with many oscillators and with rate transitions
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computed after a realistic model of a microcavity displays intricate dynamics with complex
evolution from thermal to coherent statistics. However, the main features are shared by both
systems, validating the two-oscillators system as a good aid in understanding how coherence
appears without prior existence in an actual device. The oscillations of N0 observed at initial
times (about 100 ps) are caused by a competing population of ground state and bottleneck in
a cavity. With increasing population, the bottleneck is shifted towards lower momenta, until
it overlaps the magic angle which results in a collapse of an important fraction of polaritons
into the ground state by effective scattering. The bottleneck is therefore strongly and suddenly
depleted, emptying excited states that were feeding the ground state. The latter, not being
sufficiently provided for anymore,decays in amplitude until the pump replenishes excited states
which can stock up in the bottleneck again and start anew populating the ground state. This
process repeats until a population large enough to sustain continuously stimulated emission
from excited states is reached, so that they are no longer abruptly emptied by collapse into the
ground state. Interestingly, although the population is oscillating back and forth at this stage,
the coherence steadily increases. In this regime where coherence can build up, starting from
vacuum, the state first turns into a thermal state (cf figure 4(b)) with exponentially decreasing
statistics, then it starts to develop a nonzero maximum while still being strongly asymmetric,
until it eventually displays the statistics of a coherent state. However, in a regime where
coherence is unable to build up, as is the case of figure 4(d) where the pumping power is four
times smaller than for the previous case, the statistics remains those of a thermal state at all
times.

4. Conclusions

We have presented an overview of the physics of microcavity polaritons, introducing key
notions and putting emphasis on the existence of a strong coupling regime where new
eigenstates of the microcavity (polaritons) are bosons at sufficiently low densities, with
appealing characteristics to exhibit coherent phenomena. We studied theoretically the second-
order coherence of a condensate of polaritons formed in this strong coupling regime. We
showed that the coherence, once introduced in the cavity by a ‘seed’ population of coherent
polaritons, can survive over a macroscopically long time. We have also investigated the
possibility of coherence buildup for the polaritons in the ground state without a seed. This
effect can be described by introducing the dependence of polariton relaxation rates Win and
Wout on the population of the ground state (rather than on its average value). This dependence
arises from either conservation of the total number of particles in the system that imposes
correlations between momentary populations of ground and excited states or from polariton–
polariton interaction. Both effects are essentially classical. Spontaneous coherence buildup
can indeed be observed, while it is not yet an evidence for polariton Bose condensation or
superfluid phase transition.
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[1] Le Si Dang D, Heger D, André R, Boeuf F and Romestain R 1998 Phys. Rev. Lett. 81 3920
[2] Senellart P and Bloch J 1999 Phys. Rev. Lett. 82 1233
[3] Stevenson R M, Astratov V N, Skolnick M S, Whittaker D M, Emam-Ismail M, Tartakovskii A I, Savvidis P G,

Baumberg J J and Roberts J S 2000 Phys. Rev. Lett. 85 3680
[4] Savvidis P G, Baumberg J J, Stevenson R M, Skolnick M S, Whittaker D M and Roberts J S 2000 Phys. Rev.

Lett. 84 1547
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